Some Properties of Alexandrov Topologies

نویسندگان

  • Yong Chan Kim
  • Young Sun Kim
چکیده

Alexandrov topologies are the topologies induced by relations. This paper addresses the properties of Alexandrov topologies as the extensions of strong topologies and strong cotopologies in complete residuated lattices. With the concepts of Zhang’s completeness, the notions are discussed as extensions of interior and closure operators in a sense as Pawlak’s the rough set theory. It is shown that interior operators are meet preserving maps and closure operators are join preserving maps in the perspective of Zhang’s definition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Join-meet Approximation Operators Induced by Alexandrov Fuzzy Topologies

In this paper, we investigate the properties of Alexandrov fuzzy topologies and join-meet approximation operators. We study fuzzy preorder, Alexandrov topologies join-meet approximation operators induced by Alexandrov fuzzy topologies. We give their examples.

متن کامل

FUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY AUTOMATON BASED ON GENERALIZED RESIDUATED LATTICE

This work is towards the study of the relationship between fuzzy preordered sets and Alexandrov (left/right) fuzzy topologies based on generalized residuated lattices here the fuzzy sets are equipped with generalized residuated lattice in which the commutative property doesn't hold. Further, the obtained results are used in the study of fuzzy automata theory.

متن کامل

The Functorial Relations between Alexandrov Fuzzy Topologies and Upper Approximation Operators

In this paper, we investigate functorial relations between Alexandrov fuzzy topologies and upper approximation operators in complete residuated lattices. We present some examples. AMS Subject Classification: 03E72, 03G10, 06A15, 06F07, 54A40

متن کامل

Join Preserving Maps, Fuzzy Preorders and Alexandrov Fuzzy Topologies

In this paper, we investigate the properties of join preserving maps in complete residuated lattices. We define join approximation operators as a generalization of fuzzy rough sets in complete residuated lattices. Moreover, we investigate the relations between join preserving operators and Alexandrov fuzzy topologies. We give their examples. AMS Subject Classification: 03E72, 03G10, 06A15, 06F07

متن کامل

Some topologies on the space of quasi-multipliers

‎Assume that $A$ is a Banach algebra‎. ‎We define the‎ ‎$beta-$topology and the $gamma-$topology on the space $QM_{el}(A^{*})$ of all bounded extended left quasi-multipliers of $A^{*}.$‎ ‎We establish further properties of $(QM_{el}(A^{*}),gamma)$ when $A$ is a $C^{*}-$algebra‎. ‎In particular‎, ‎we characterize the $gamma-$dual‎ ‎of $QM_{el}(A^{*})$ and prove that $(QM_{el}(A^{*}),gamma)^{*},$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Fuzzy Logic and Intelligent Systems

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015